Summary of Kernel-Mode Support Routines

1.1.1 Hardware Configuration

| oGetDeviceProperty
Retrieves device setup information from the registry. Use thisroutine, rather than accessing the
registry directly, to in sulate a driver from differences across platforms and from possible changes in
the registry structure.
| oReportDetectedDevice
Reports anonPnP device to the PnP Manager.
| oReportResour ceFor Detection
Claims hardware resourcesin the configuration registry for alegacy device. Thisroutineisfor
driversthat detect legacy hardware which cannot be enumerated by PnP.
|oGetDmaAdapter
Returnsa pointer to the DMA adapter structure that represents either the DMA channel to which a
deviceis connected or the driver's busmaster adapter.
| oGetConfigurationlnformation
Returns a pointer to the I/O Manager's configurat ion information structure, which indicates the
number of disk, floppy, CD-ROM, tape, SCSI HBAS, sexial, and parallel device objects that have
already been named by previoudy loaded drivers, as well as whether certain address ranges have
been claimed by "AT" disk-type drivers.
HalExamineM BR
Returns data from the master boot record (MBR) of a disk.
|oReadPartitionTable
Returnsalist of partitions on adisk with a given sector size.
lolnvalidateDeviceRelations
Notifies the PnP manager that the relations for a device have changed. Thetypes of devicerelations
include bus relations, gjection relations, removal relations, and the target device relation.
lolnvalidateDeviceState
Notifies the PnP manager that some aspect of the PnP state of adevice has changed. In response,
the PnP Manager sendsan IRP_MN_QUERY _PNP_DEVICE_STATE to the device stack.
| oRegister PlugPlayNotification
Registersadriver callback routine to be called when a PnP event of the specified category occurs.
loUnr egister PlugPlayNotification
Removes the registration of adriver's callback routine for a PnP event.
| oReguest DeviceEj ect
Notifies the PnP Manager that the device gject button was pressed. This routine reports aregquest
for device gect, not media gject.
|oReportTar getDeviceChange
Notifies the PnP Manager that a custom event has occurred on adevice. The PnP Manager sends
notification of the event to driversthat registered for notification on the device.

1.1.2 Registry

|oGetDeviceProperty
Retrieves device setup information from the registry. Use this routine, rather than accessing the
registry directly, to insulate a driver from differences across platforms and from possible changesin
the registry structure.

| 0OpenDevicel nterfaceRegistryK ey
Returns a handle to aregistry key for storing information about a particular device interface.

| oOpenDeviceRegistryK ey

Returns a handle to a device specific or adriver-specific registry key for aparticular device
instance.
|oRegister Devicel nterface
Registers device functionaity (a device interface) that a driver will enable for use by applications
or other system components. The I/O Manager creates aregistry key for the device interface.
Drivers can access persistent storage under thiskey using |oOpenDevicel nter faceRegistryK ey.
loSetDevicel nterfaceState
Enables or disables a previoudy registered device interface. Applications and other system
components can open only interfaces that are enabled.
RtICheckReqgistryK ey
Returns STATUS _SUCCESS if akey existsin the registry along the given relative path.
RtICreateReqistryK ey
Adds akey object in the registry along the given relative path.
RtlQueryReqistryValues
Gives the driver-supplied QueryRegistry callback (read only) access to the entries for the specified
value name along the specified relative path in the registry after the QueryRegistry routineis given
control.
RtIWriteRegistryValue
Writes caller-supplied datainto the registry along the specified relative path at the given vaue
name.
RtIDeleteRegistryValue
Removes the specified vaue name (and the associated val ue entries) from the registry along the
given relative path.
InitializeObj ectAttributes
Sets up a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a ZwCreate Xxx or
ZwOpenXxx routine.
ZwCreateKey
Creates anew key in the registry with the given object's attributes, alowed access, and creation
options (such as whether the key is created again when the system is booted). Alternatively, opens
an existing key and returns ahandle for the key object.
ZwOpenKey
Returns ahandle for akey in the registry given the object's attributes (which must include a name
for the key) and the desired access to the object.
ZwQueryKey
Returnsinformation about the class of akey, and the number and sizes of its subkeys. This
information includes, for example, the length of subkey names and the size of value entries.
ZwEnumerateK ey
Returns the specified information about the subkeys of an opened key in the registry.
ZwEnumerateValueK ey
Returns the specified information about the value entry, as selected by a zero-based index, of an
opened key in theregistry.
ZwQueryValueKey
Returnsthe value entry, as selected by a czero-based index, for an opened key in the registry.

ZwSetValueK ey
Replaces (or crestes) avalue entry for an opened key in the registry.

ZwFlushK ey
Foroes changes made by ZwCreateK ey or ZwSetValueK ey for the opened key object to be written
to disk.

ZwDeleteK ey
Removes akey and its value entries from the registry as soon asthe key is closed.

ZwClose
Releases the handle for an opened object, causing the handle to become invalid and decrementing

the reference count of the object handle.

1.1.3 Standard Driver Routines

|oReqgister Driver Reinitialization
Sets up the driver-supplied Reinitialize routine, together with its context, so that the Reinitidize

routine is called after each subsequently loaded driver's Driver Entry routine returns control .

loConnectinterrupt
Registers an ISR and sets up interrupt objects using values supplied in the PnP

IRP_MN_START_DEVICE request. Returns a pointer to a set of interrupt objects that must be
passed, along with the driver's SynchCritSection entry point, to KeSynchronizeExecution.

| oDisconnect| nterrupt
Releases adriver'sinterrupt objects.

lolnitializeDpcRequest
Associates a driver -supplied DpcForlsr routine with a given device object, so that the DpcForlsr
can complete interrupt-driven 1/0 operations.

KelnitializeDpc
Initializes a DPC object, setting up a driver-supplied CustomDpc routine that can be called with a
given context.

KelnitializeTimer
Initiaizesanotification timer object to the Not-Signaled state.

KelnitializeTimer Ex
Initializes anatification or synchronization timer object to the Not-Signaed state.

lolnitializeTimer
Associates atimer with thegiven device object and registers a driver-supplied loTimer routine for
the device object.

MmL ock PagableCodeSection
Locksaset of driver routines marked with a special compiler directive into system space. This
operation can occur during driver initialization but usually occurs in the driver's DispatchCreate
routine.

MmL ockPagableDataSection
Locks anamed data section, which is marked with a special compiler directive, into system space if
that datais used infrequently, predictably, and at an IRQL lessthan DISPATCH_LEVEL.

MmL ock PagableSectionByHandle
L ocks a pagesble section into system memory using a handle returned from
MmL ockPagableCodeSection or MmL ockPagableDataSection.

MmUnlockPagablel mageSection
Releases a set of driver routines or a set of data that was locked into nonpaged system space when
the driver isno longer processing IRPs.

MmPageEnti reDriver
Allowsadriver to page out all of its code and data, regardless of the attributes of the various
sectionsin the driver'simage.

MmResetDriver Paging
Resets adriver's pageable status to that specified by the sect ions which make up the driver'simage.

1.1.4 Objects and Resources

|oCreateDevice
Initializes adevice object, which represents aphysical, virtual, or logical device for which the
driver is being loaded into the system. Then it alocates space for the driver-defined device
extension associated with the device object.

loDeeteDevice
Removes a device object from the system when the underlying device is removed from the system.

| oGetDeviceObj ectPointer
Requests access to anamed device object and returns a pointer that device object if the requested
accessis granted Also returns apointer to thefile object referenced by the named device object. In
effect, thisroutine establishes a connection between the caller and the next-lower-level driver.

| oAttachDeviceT oDeviceStack
Attachesthe caller's device object to the highest device object in achain of driversand returnsa
pointer tothe previously highest device object. 1/0 requests bound for the target device are routed
firsttothecaller.

| oGetAttachedDeviceReference
Returns a pointer to the highest level device object in adriver stack and increments the reference
count on that object.

loDetachDevice
Releases an attachment between the caller's device object and atarget driver's device object.

l0AllocateDriver ObjectExtension
Allocates a per-driver context area with a given unique identifier.
loGetDriver ObjectExtension
Retrieves a previoudly allocated per-driver context area.
|oRegister Devicel nterface
Registers device functionality (adevice interface) that a driver will enable for use by applications
or other system components. The I/O Manager creates aregistry key for the device interface.
Drivers can access persistent storage under this key using |oOpenDevicel nterfaceRegistryK ey.
lolswdmVersonAvailable
Checks whether agiven WDM version is supported by the operating system.
loDeleteSymbolicL ink
Releases a symbolic link between a device object name and a user-visible name.
|0AssignArcName
Sets up a symbolic link between a named device object (such as atape, floppy, or CD-ROM) and
the corresponding ARC name for the device.
loDeassignArcName
Releases the symbolic link created by calling 10AssignArcName.
1 0SetShar eAccess
Setsthe access allowed to agiven file object that represents adevice. (Only highest -level drivers
can call thisroutine.)
loConnectlnterrupt
Registers adriver's | SR according to the parameters supplied in the IRP_MN_START_DEVICE
request. Returns a pointer to a set of alocated, initialized, and connected interrupt objectsthat is
used as an argument to K eSynchr onizeExecution.
loDisconnect| nterrupt
Releases a driver'sinterrupt objects when the driver unloads.
|oReadPartitionTable
Returnsalist of partitions on a disk with agiven sector size.
l0SetPartitionl nfor mation
Sets the partition type and number for a (disk) partition.
loWritePartitionTable
Writes partition tablesfor adisk, given the device object that represents the disk, the sector size,
and a pointer to a buffer containing the drive layout structure.
1oCreateController
Initializes a controller object that represents a physica device controller which is shared by two or
more similar devices that have the same driver, and specifies the size of the controller extension.
loDeleteController
Removes a controller object from the system.
KelnitializeSpinL ock
Initializesavariable of type KSPIN_LOCK.
KelnitializeDpc
Initializes a DPC object, setting up a driver-supplied CustomDpc routine that can be called with a
given context.
KelnitializeTimer
Initializesanotification timer object to the Not-Signaled state.
KelnitializeTimer Ex
Initializes anotification or synchronization timer object to the Not-Signaled state.
KelnitializeEvent
Initializes an event object asa synchronization (single waiter) or notification (multiple waiters) type
event and sets up itsinitial state (Signaled or Not-Signaled).
ExInitializeFastM utex
Initilizes afast mutex variable that is used to synchronize mutually exclusive accessto a shared
resource by a set of threads.
KelnitializeM utex
Initializes amutex object at a given level number as set to the Signaled state.
KelnitializeSemaphore
Init idizes a semaphore object to agiven count and specifies an upper bound for the count.
loCreateNatificationEvent
Initializes a named notification event to be used to synchronize access between two or more
components. Notification events are not automatically reset.
1oCreateSynchronizationEvent

Initializes a named synchronization event to be used to seridize access to hardware between two
otherwise unrelated drivers.
PsCreateSystemThread
Createsakernel-mode thread that is associated with a given process object or with the default
system process. Returns a handle for the thread.
PsTerminateSystemT hread
Terminates the current thread and satisfies as many waits as possible for the current thread object.
KeSetBasePriorityThread
Setsup the run-time priority, relative to the system process, for adriver-created thread.
KeSetPriorityThread
Sets up the run-time priority for adriver-created thread with areal-time priority attribute.
MmIsThisAnNtAsSystem
Returns TRUE if the current platform is a server, indicating that more resources are likely to be
necessary to process I/O requests than if the machine were aclient.
MmQuerySystemSize
Returns an estimate (small, medium, or large) of the amount of memory available on the current
platform.
ExInitializeNPagedL ookasidel ist
Initializes alookaside list of nonpaged memory. After a successful initialization, fixed-size blocks
can be allocated from and freed to the lookaside list.
ExInitializePagedL ookasidel ist
Initializes alookaside list of paged memory. After a successful initiaization, fixed-size blockscan
be allocated from and freed to the lookaside list.
ExInitializeResourcel ite
Initializes aresource, for which the caller provides the storage, to be used for synchronization by a
set of threads.
ExReinitializeResour cel ite
Reinitializes an existing resource variable.
ExDeleteResour cel ite
Deletes acaler-initidized resource from the system's resource list.
ObReferenceObjectByHandle
Returns a pointer to the object body and handle information (attributes and granted access rights),
given the handle for an object, the object'stype, and amask. Specifies the desired accessto the
object and the preferred access mode. A successful call increments the reference count for the
object.
ObRefer enceObj ectByPointer
Increments the reference count for an object so the caller can ensure that the object is not removed
from the system while the caller isusing it.
ObRefer enceObj ect
Increments the reference count for an object, given apointer to the object.
ObDer efer enceObj ect
Releases areference to an object (decrements the reference count), given a pointer to the object
body.
RtlinitString
Initializes a counted string in abuffer.
RtlInitAnsiString
Initializes a counted ANSI string in a buffer.
RtlInitUnicodeString
Initializes a counted Unicode string in a buffer.
I nitializeObjectAttributes
Initializes aparameter of type OBJECT_ATTRIBUTES for a subsequent call to a ZwCr eate Xxx or
ZwOpenXxx routine.
ZwCreateDir ectoryObject
Creates or opens adirectory object with a specified set of object attributes and requests one or more
typesof accessfor the caller. Returns ahandle for the directory object.
ZwCreateFile
Creates or opens afile object that represents aphysical, logical, or virtua device, adirectory, adata
file, or avolume. Returns a handle for thefile object.

ZwCreateKey
Creates or opens akey object in the registry and returns a handle for the key object.

ZwDeleteK ey

Deletes an existing, open key in the registry after thelast handlefor the key is closed.
ZwM akeT empor aryObj ect
Resets the "permanent" attribute of an opened object, so that the object and its name can be deleted
when the reference count for the object becomes zero.
ZwClose
Releases the handle for an opened object, causing the handle to becomeinvalid, and decrementsthe
reference count of the object handle.
PsGetVersion
Indicates whether the driver is running on afree or checked build of Windows NT/Windows 2000,
and optionally suppliesinformation about the operating system version and build number.
ObGetObjectSecurity
Returns a buffered security descriptor for a given object.
ObReleaseObj ectSecurity
Releases the security descriptor returned by ObGetObj ectSecurity.

1.1.5 Initializing Driver-Managed Queues

KelnitializeSpinL ock
Initidlizesavariable of type KSPIN_LOCK. Aninitialized spin lock isarequired parameter to the
Ex..InterlockedList routines.
Initializel istHead
Sets up aqueue header for adriver'sinterna queue, given a pointer to driver-supplied storage for
the queue header and queue.
ExInitializeSL istHead
Sets up the queue header for asequenced, interlocked, singly -linked list.
KelnitializeDeviceQueue
Initializes a device queue object to a Not Busy state, setting up an associated spin lock for
multiprocessor -safe access to device queue entries.

1.2.1 Processing IRPs

loGetCurrentlrpStackL ocation
Returns a pointer to the caller's 1/0 stack location in agiven IRP.
loGetNextIrpStackL ocation
Returns a pointer to the next-lower-level driver's 1/O stack location in agiven IRP.
loCopyCurrentlrpStackL ocationT oNext
Copiesthe IRP stack parameters from the current stack location to the stack locat ion of the next-
lower driver and allows the current driver to set an 1/0O completion routine.
loSkipCurrentlrpStackL ocation
Copiesthe IRP stack parameters from the current stack location to the stack location of the next-
lower driver and does not allow the current driver to set an 1/0 completion routine.
loGetRelatedDeviceObj ect
Returns a pointer to the device object represented by a given file object.
loGetFunctionCodeFromCtiCode
Returnsthe vaue of the function field within agiven IOCTL_XXX or FSCTL_XXX.
loSetCompletionRoutine
Registers a driver-supplied loCompletion routine for an IRP, so the loCompletion routineis called
when the next-lower-level driver has completed the requested operation in one or more of the
following ways: successfully, with an error, or by canceling the IRP.
loCallDriver
Sends an IRPto alower-level driver.
PoCallDriver
Sends an |RP with major function code IRP_MJ_POWER to the next-lower driver.

loMarklrpPending

Marks agiven IRP indicating that STATUS _PENDING was returned because further processing is
required by another driver routine or by alower-level driver.

| oStar tPacket
Cdlsthe driver's Startlo routine with the given IRP for the given device object or insertsthe IRP
into the device queue if the device is already busy, specifying whether the IRP is cancelable.

oA cquireCancel SpinL ock
Synchronizes cancelable state transitions for IRPsin a multiprocessor-safe manner.

| oSetCancelRoutine
Sets or clearsthe Cancel routinein an IRP. Setting a Cancel routine makes an |RP cancelable.

| oReleaseCancel SpinL ock
Releases the cancel spin lock when the driver has changed the cancel able state of an |RP or releases
the cancel spin lock from the driver's Cancel routine.

loCancellrp
Marks an IRP as canceled.

|oReadPartitionTable
Returnsalist of partitions on adisk with a given sector size.

| oSetPartitionl nformation
Setsthe partition type and number for a (disk) partition.

loWritePartitionTable
Writes partition tables for adisk, given the device object representing the disk, the sector size, and a
pointe to abuffer containing the drive geometry.

loAllocateErrorL ogEntry
Allocates and initializes an error log packet; returns a pointer so that the caller can supply error-log
dataand call loWriteErrorLogEntry with the packet.

loWriteErrorL ogEntry
Queues a previoudly alocated and filled-in error log packet to the system error logging thread.

lolsErrorUserlnduced
Returns a Boolean value indicating whether an 1/0 request failed due to one of the following
conditions: STATUS_|O_TIMEOUT, STATUS DEVICE_NOT_READY,
STATUS UNRECOGNIZED_MEDIA, STATUS VERIFY_REQUIRED,
STATUS WRONG_VOLUME, STATUS MEDIA_WRITE_PROTECTED, or
STATUS NO_MEDIA_IN_DEVICE. If theresult is TRUE, aremovable-media driver must call
loSetHardError OrVerifyDevice before completing the IRP.

loSetHardError OrVerifyDevice
Supplies the device object for which the given IRP was failed due to a user-induced error, such as
supplying theincorrect mediafor the requested operation or changing the media before the
requested operation was completed. A file system driver uses the associated device object to notify
the user, who can then correct the error or retry the operation.

|oGetDeviceToVerify
Returns a pointer to the device object, representing a removablemedia device that is the target of
the given thread's 1/O request. Useful only to file systems or other highest-level drivers.

|oRaiseHardError
Notifies the user that the given |RP was failed on the given device object for an optiona VPB, so
that the user can correct the error or retry the operation.

| oRaisel nformationalHardError
Notifi es the user of an error, providing an 1/O error status and an optional string supplying more
information.

ExRaiseStatus
Raises an error status and causes a caller-supplied structured exception handler to be called. Useful
only tohighest -level driversthat supply exception handlers, in particular to file systems.

| oStartNextPacket
Dequeues the next IRP for a given device object, specifies whether the IRP is cancelable, and calls
the driver's Startlo routine.

| oStartNextPacketByK ey
Dequeues the next |RP for a device object according to a specified sort-key value, specifies whether
the IRP is cancelable, and calls the driver's Startl o routine.

|oCompleteRequest
Completes an /O request, giving a priority boost to the origina caller and returning agiven IRP to
the /O system for disposal: either to call any |oCompletion routines supplied by higher-level
drivers, or to return status to the original requestor of the operation.

10GetCurrentProcess

Returns a pointer to the current process. Useful only to highest-level drivers.
10GetlInitial Stack

Returns the initial base address of the current thread's stack. Useful only to highest-level drivers.
loGetRemainingStackSize

Returns the amount of available stack space. Useful only to highest -level drivers.
loGetStackL imits

Returns the boundaries of the current thread's stack frame. Useful only to highest -level drivers.

1.2.2 Driver-Allocated IRPs

loBuildAsynchronousFsdRequest
Allocates and sets up an IRP that specifiesamajor function code (IRP_MJ PNP, IRP_MJ READ,
IRP_MJ WRITE, IRP_MJ SHUTDOWN, or IRP_MJ_FLUSH_BUFFERS) with a pointer to:

The lower driver's device object on which the 1/0O should occur

A pointer to a buffer which will contain the data to be read or which contains the data to
be written

Thelength of the buffer in bytes
The starting offset on the media

The 1/0 status block where the called driver can return status information and the
caller's loCompletion routine can access it.

333 33

Returns a pointer to the IRP so the caller c an set any necessary minor function code and set up its

loCompletion routine before sending the IRP to the target driver.

10BuildSynchronousFsdRequest
Allocates and sets up an | RP specifying amgjor function code (IRP_MJ _PNP, IRP_MJ READ,
IRP_MJ WRITE, IRP_MJ SHUTDOWN, or IRP_MJ_FLUSH_BUFFERS) with a pointer to:

The lower driver's device object on which the I/O should occur;

A buffer which will contain the data to be read or which contains the data to be written
The length of the buffer in bytes,

The starting offset on the medig;

An event object to be set to the Signaled state when the requested operation completes

The 1/0 status block where the called driver can return status information and the
caler's loCompletion routine can accessiit.

TN S S S B

Returns a pointer to the IRP so the caller can set any necessary minor function code and set up its

loCompletion routine before sending the IRP to the target driver.

loBuildDevicel oControlReguest
Allocates and sets up an IRP specifying amajor function code (either
IRP_MJ INTERNAL_DEVICE_CONTROL or IRP_MJ DEVICE_CONTROL) with an optional
input or output buffer; a pointer to the lower driver's device object; an event to be set to the
Signaled state when the requested operation completes; and an 1/0 status block to be set by the
driver that receives the IRP. Returns a pointer to the IRP so the caller can set the appropriate
IOCTL_XXX before sending the IRP to the next-lower-level driver.

PoRequestPower I rp
Allocates and initializes an IRP with major function code IRP_MJ_POWER and then sends the IRP
tothetop-level driver in the device stack for the specified device object.

10SizeOflrp
Returns the size in bytes required for an |RP with a given count of 1/O stack locations.

loAllocatelrp

Allocates an IRP, given the number of 1/0 stack locations (optionaly, for the caller, but at least one
for each driver layered under the caller) and whether to charge quota against the caller. Returns a
pointer to an IRP in nonpaged system space if successful; otherwise, returns NULL.

lolnitializelrp
Initializes an IRP, given a pointer to an aready alocated IRP, its length in bytes, and its number of
1/0 stack locations.

| oSetNextlrpStackl ocation
Sets the current IRP stack location to the caller's location in an IRP. The stack |ocation must have
been dlocated by a preceding call to |oAllocatel rp that specified a stack-size argument large
enough to give the caller its own stack location.

| 0AllocateMdl
Allocates an MDL large enough to map the starting address and length supplied by the caller;
optionally associates the MDL with agiven IRP.

|oBuildPartialMdl
Builds an MDL for the specified starting virtual address and length in bytes from a given source
MDL. Driversthat split large transfer requestsinto a number of smaller transfers can cal this
routine.

|oFreeMdl
Releases agiven MDL allocated by the caller.

oM akeAssociatedlrp
Allocates and initializes an IRP to be associated with a master IRP sent to the highest -level driver,
alowing the driver to "split" the original request and send associated |RPs on to lower-level drivers
or to thedevice.

| oSetCompletionRoutine
Registers a driver-supplied loCompletion routine with agiven IRP, so that the loCompletion
routine is called when lower-level drivers have completed the request. The loCompletion routine
letsthe caller release the IRP it alocated with | 0Allocatel rp or
I oBuildAsynchronousFsdRequest ; to release any other resourcesit alocated to set up an IRP for
lower drivers; and to perform any 1/0 completion processing necessary.

loCallDriver
Sendsan IRPto alower-level driver.

loFreelrp
Releases an IRP that was allocated by the caller.

loReuselrp
Reinitializes for reuse an IRP that was previoudly alocated by 10Allocatel rp.

1.2.3 File Objects

InitializeObj ectAttributes
Initializes a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a ZwCreate Xxx or
ZwOpenXxx routine.

ZwCreateFile
Creates or opens afile object representing a physicd, logical, or virtua device, adirectory, a data
file, or avolume.

ZwQueryl nformationFile
Returns information about the state or attributes of an open file.

| 0GetFileObjectGenericM apping
Returns information about the mapping between generic access rights and specific access rights for
fileobjects.

ZwReadFile
Returns datafrom an openfile.

ZwSetInformationFile
Changes information about the state or attributes of an open file

ZwWriteFile
Transfers datato an openfile.

ZwClose
Releases the handle for an opened object, causing the handle to becomeinvalid and decrementing
the reference count of the object handle.

1.3.1 Driver Routines and I/O Objects

K eSynchronizeExecution
Synchronizes the execution of adriver -supplied SynchCritSection routine with that of the ISR
associated with a set of interrupt objects, given a pointer to the interrupt objects.

loRequestDpc
Queues a driver-supplied DpcForls routine to complete interrupt-driven 1/O processing at alower
IRQL.

KelnsertQueueDpc

Queues a DPC to be executed as soon as the IRQL of a processor drops below
DISPATCH_LEVEL,; returns FALSE if the DPC object is aready queued.
KeRemoveQueueDpc
Removes a given DPC object from the DPC queue; returns FAL SE if the object is not in the queue.
KeSetl mportanceDpc
Controls how a particular DCP is queued and, to some degree, how soon the DPC routine is run.
KeSetTar getProcessor Dpc
Controls on which processor a particular DCP subsequently will be queued.
AllocateAdapter Channel
Connects a device object to an adapter object and calls a driver-supplied AdapterControl routine to
carry out an |/O operation through the system DMA controller or abusmaster adapter as soon asthe
appropriate DMA channel and any necessary map registers are available. (Thisroutine reserves
exclusive accessto aDMA channel and map registers for the specified device.)
FreeAdapter Channel
Releases an adapter object, representing a system DMA channel, and optionally rel eases map
registers, if any were allocated.
FreeMapReqgisters
Releases a set of map registers that were saved from acal to AllocateAdapter Channdl, after the
registers have been used by loMapTransfer and the busmaster DMA transfer is complete.
loAllocateController
Connects a device object to a controller object and calls a driver-supplied ControllerControl routine
to carry out an 1/0 operation on the device controller as soon as the controller is not busy. (This
routine reserves exclusive access to the hardware controller for the specified device.)
loFreeController
Releases a controller object, provided tha all device operations queued to the controller for the
current |RP have completed.
loStartTimer
Enables the timer for agiven device object and calls the driver-supplied loTimer routine once per
second theresfter.
loStopTimer
Disables the timer for a given device object so that the driver-supplied loTimer routineis not called
unlessthe driver re-enablesthetimer.
KeSetTimer
Sets the absolute or relative inteval at which atimer object will be set to the Signaled state and
optionally supplies atimer DPC to be executed after the interva expires.
KeSetTimer Ex
Sets the absolute or relative interval at which atimer object will be set to the Signaled state,
optionally supplies atimer DPC to be executed when the interval expires, and optionally suppliesa
recurring interva for the timer.
KeCancel Timer
Cancelsatimer object before the interval passed to KeSetTimer expires; dequeues atimer DPC
before the timer interval, if any was set, expires.
KeReadStateTimer
Returns whether a given timer object is set to the Signaled state.
loStartPack et
Callsthe driver's Startl o routine with the given IRP for the given device object or insertsthe IRP
into the device queue if the device is aready busy, specifying whether the IRP is cancelable.

loStartNextPacket

Dequeues the next IRP for a given device object, specifying whether the IRP is cancelable, and
calsthedriver's Startlo routine.

| oStartNextPacketByK ey
Dequeues the next |RP, according to the specified sort -key value, for agiv en device object.
Specifies whether the IRPis cancelable and calls the driver's Startlo routine.

| oSetCompletionRoutine
Registers a driver-supplied loCompletion routine with agiven IRP, so the loCompletion routineis
called when the next-lower-level driver has completed the requested operation in one or more of the
following ways: successfully, with an error, or by cancelling the IRP.

| oSetCancelRoutine
Sets or clears the Cancel routine in an | RP. Setting a Cancel routine makes an |RP cancelable.

K eStallExecutionPr ocessor
Stallsthe caller (adevicedriver) for agiven interval on the current processor.

ExAcquireResour ceExclusivel ite
Acquires an initialized resource for exclusive access by the calling thread and optionally waits for
the resource to be acquired.

ExTryToAcquireResour ceExclusivel ite
Acquires a given resource for exclusive access immediaely or returns FALSE.

ExAcquireResour ceSharedL ite
Acquires an initialized resource for shared access by the calling thread and optionally waits for the
resource to be acquired.

ExAcquireShar edStarveExclusive
Acquires a given resource for shared access without waiting for any pending attempts to acquire
exclusive access to the same resource.

ExAcquireSharedWaitFor Exclusive
Acquires agiven resource for shared access, optionally waiting for any pending exclusive waiters
to acquire and release the resource first.

ExReleaseResour ceFor ThreadL ite
Releases a given resource that was acquired by the given thread.

ZwReadFile
Reads data from an open file. If the caller opened the file object with certain parameters, the caller
can wait on thefile handle for completion of thel/O.

ZwWriteFile
Writes datato an open file. If the caller opened the file object with certain parameters, the caller can
wait on the file handle for completion of the I/O.

1.3.2 IRQL

KeRaisalral
Raises the hardware priority to agiven IRQL value, thereby masking off interrupts of equivalent or
lower IRQL on the current processor.

KeRaiselrglToDpcl evel
Raisesthe hardware priority to IRQL DISPATCH_LEVEL, thereby masking off interrupts of
equivaent or lower IRQL on the current processor.

Kel owerlral
Restoresthe IRQL on the current processor toitsoriginal value.

KeGetCurrentirgl
Returnsthe current hardware priority IRQL value.

1.3.3 Spin Locks and Interlocks

| 0AcquireCancel SpinlL ock
Synchronizes cancelable state transitions for IRPsin a multiprocessor-safe manner.
| oSetCancelRoutine

Sets or clears the Cancel routine in an IRP during a cancelable state transition. Setting a Cancel
routine makes an IRP cancelable.

loReleaseCancel SpinL ock
Releases the cancel spin lock when the driver has changed the cancelable state of an IRP or releases
the cancel spin lock from the driver's Cancel routine.

KelnitializeSpinL ock
Initidizes avariable of type KSPIN_LOCK, used to synchronize access to data shared among
nonl SR routines. Aninitialized spin lock also isarequired parameter to the ExI nterlock edXxx

routines.

KeAcquireSpinL ock
Acquires a spin lock so the caler can synchronize access to shared data safely on multiprocessor
platforms.

KeReleaseSpinL ock

Releases a spin lock that was acquired by calling KeAcquireSpinLock and restoresthe original
IRQL at which the caller was running.

KeAcquireSpinL ockAtDpcl evel
Acquiresaspin lock, provided that the caller isaready running at IRQL DISPATCH_LEVEL.

K eReleaseSpinL ockFromDpcl evel
Releases a spin lock that was acquired by calling KeAcquireSpinL ockAtDpcL evel.

ExlInterlocked..List
Insert and remove IRPsin a driver-managed internal queue, which is protected by an initidized
spin lock for which the driver provides the storage.

Ke.DeviceQueue
Insert and remove IRPs in a driver-allocated and managed internal device queue object, whichis
protected by abuilt-in spin lock.

ExInterlockedAddUlong
Adds avalueto avariable of type ULONG as an atomic operation, using a spin lock to ensure
multiprocessor - safe access to the variable; returns the value of the variable before the call occurred.

ExInterlockedAddL ar gelnteger
Addsavaueto avariable of type LARGE_INTEGER as an atomic operation, using a spin lock to
ensure multiprocessor-safe access to the variable; returnsthe value of the variable before the call
occurred.

InterlockedIncrement
Increments a variable of type LONG as an atomic operation. The sign of the return valueisthe sign
of theresult of the operation.

InterlockedDecr ement
Decrementsavariable of type LONG as an atomic operation. T he sign of thereturn valueisthe
sign of theresult of the operation.

InterlockedExchange
Setsavariable of type LONG to a specified value as an atomic operation; returns the value of the
variable beforethe call occurred

InterlockedExchangeAdd
Adds avaue to agiven integer variable as an atomic operation; returns the value of the variable
beforethecall occurred.

InterlockedCompar eExchange
Comparesthe values referenced by two pointers. If the values are equd, resets one of the valuesto
acaller-supplied value in an atomic operation.

I nterlockedCompar eExchangePointer
Compares the pointers referenced by two pointers. If the pointer values are equal, resets one of the
values to a caller-supplied value in an atomic operation.

ExInterlockedCompar eExchange64
Compares one integer variable to another and, if they are equal, resetsthe first variableto acaller-
supplied ULONGLONGype vaue as an atomic operation.

KeGetCurrentProcessor Number
Returns the current processor number when debugging spin lock usage in SMP machines.

1.3.4 Timers

lolnitializeTimer

Associates atimer with the given device object and registers a driver-supplied loTimer routine for
the device object.
loStartTimer
Enables the timer for a given device object and calls the driver-supplied |oTimer routine once every
second.
loStopTimer
Disables the timer for agiven device object so the driver-supplied loTimer routineis not caled
unless the driver re-enablesthetimer.
KelnitializeDpc
Initializes a DPC object and sets up a driver-supplied CustomTimerDpc routine that can be called
with agiven context.
KelnitializeTimer
Initializes anoatification timer object to the Not-Signaed state.
KelnitializeTimer Ex
Initializes anatification or synchronization timer object to the Not-Signaed state.
KeSetTimer
Sets the absolute or relative interval at which atimer object will be set to the Signaled state;
optionally supplies atimer DPC to be executed when the interval expires.
KeSetTimerEx
Sets the absolute or relative interval at which atimer object will be set to the Signaled state;
optionally suppliesatimer DPC to be executed when the interval expires; and optionally suppliesa
recurring interval for the timer.
KeCancel Timer
Cancelsatimer object before theinterval passed to KeSetTimer expires; dequeues atimer DPC
beforethe timer interval, if any was set, expires.
KeReadStateTimer
Returns TRUE if agiven timer object is set to the Signaled state.
KeQuerySystemTime
Returnsthe current systemtime.
KeQueryTickCount
Returnsthe number of interval-timer interrupts that have occurred since the system was booted.
KeQueryTimel ncrement
Returns the number of 100-nanosecond units that are added to the systam time at each interval-
timer interrupt.
KeQuerylnterruptTime
Returns the current value of the system interrupt-time count in 100-nanosecond units.
KeQueryPerformanceCounter
Returns the system performance counter value in hertz.

1.3.5 Driver Threads, Dispatcher Objects, and Resources

KeDelayExecutionThread
Putsthe current thread into an aertable or nonaertable wait state for agiven interval.
ExInitializeResourcel ite
Initializes aresource, for which the caller provides the storage, to be used for synchronization by a
set of threads (shared readers, exclusive writers).
ExReinitializeResour cel ite
Reinitializes an existing resource variable.
ExAcquireResour ceExclusivel ite
Acquires an initialized resource for exclusive access by the calling thread and optionally waits for
the resource to be acquired.
ExTryToAcquireResour ceExclusivel ite
Either acquires agiven resource for exclusive accessimmediately, or returns FALSE.
ExAcquireResourceSharedL ite
Acquires an initialized resource for shared access by the calling thread and optionally waitsfor the
resource to be acquired.
ExAcquireShar edStar veExclusive
Acquires a given resource for shared access without waiting for any pending attempts to acquire
exclusive access to the same resource.

ExAcquireShar edWaitFor Exclusive
Acquires agiven resource for shared access, optionally waiting for any pending exclusive waiters
to acquire and release the resource first.
ExlsResour ceAcquiredExclusivel ite
Returns whether the calling thread has exclusive access to a given resource.
ExlIsResour ceAcquiredSharedL ite
Returns how many times the calling thread has acquired shared access to agiven resource.
ExGetExclusiveWaiter Count
Returns the number of threads currently waiting to acquire a given resource for exclusive access.
ExGetSharedWaiter Count
Returns the number of threads currently waiting to acquire a given resource for shared access.
ExConvertExclusveT oSharedL ite
Converts agiven resource from acquired for exclusive access to acquired for shared access.
ExGetCurrentResour ceThread
Returnsthe thread ID of the current thread.
ExReeaseResour ceFor ThreadL ite
Releases a given resource that was acquired by the given thread.
ExDeleteResourcel ite
Deletes a caller-initialized resource from the system's resource list.
loQueueWorkltem
Queues an initialized work queue item so the driver-supplied routine will be called when a system
worker thread is given control.
KeSetTimer
Sets the absolute or relative interval at which atimer object will be set to the Signaled state, and
optionally supplies atimer DPC to be executed when the interval expires.
KeSetTimerEx
Setsthe absolute or reldive interva at which atimer object will be set to the Signaled state.
Optionally supplies atimer DPC to be executed when the interval expires and arecurring interval
for thetimer.
KeCancelTimer
Cancels atimer object before theinterval passed to KeSetTimer expires. Dequeues atimer DPC
before the timer interval (if any) expires.
KeReadStateTimer
Returns TRUE if agiven timer object is set to the Signaed state.
K eSetEvent
Returns the previous state of a given event object and sets the event (if not already Signaled) to the
Signaled state.
KeClear Event
Resets an event to the Not-Signaled state.
KeResetEvent
Returns the previous state of an event object and resets the event to the Not-Signaled state.
KeReadStateEvent
Returns the current state (nonzero for Signaled or zero for Not-Signaled) of a given event object.
ExAcquireFastM utex
Acquires an initialized fast mutex, possibly after putting the caller into await state until it is
acquired, and gives the calling thread ownership with APCs disabled.
ExTryToAcquireFastM utex
Acquiresthe given fast mutex immediately for the caller with APCs disabled, or returns FALSE.
ExReleaseFastM utex
Releases ownership of afast mutex that was acquired with ExAcquireFastM utex or
EXTryToAcquireFastM utex.
ExAcquireFastM utexUnsafe
Acquires an initialized fast mutex, possibly after putting the caller into await state until it is
acquired.
ExReleaseFastM utexUnsafe
Releases ownership of afast mutex that was acquired with ExAcquir eFastM utexUnsafe.
K eReleaseM utex
Releases a given mutex object, specifying whether the caller will call one of the K eWaitXxx
routines as soon as K eReleaseM utex returnsthe previous value of the mutex state (azero for
Signaled; otherwise, Not-Signaled).
KeReadStateM utex

Returnsthe current state (one for Signaled or any other value for Not-Signaled) of a given mutex
object.
KeReleaseSemaphore
Releases a given semaphore object. Supplies a(run-time) priority boost for waiting threads if the
release sets the semaphore to the Signaled state. Augments the semaphore count by a given vaue
and specifies whether the caller will call one of the KeWaitXxx routines as soon as
K eReleaseSemaphore returns.
KeReadStateSemaphore
Returns the current state (zero for Not-Signaled or a positive value for Signaled) of agiven
semaphore object.
KeWaitFor SingleObject
Puts the current thread into an aertable or nonalertable wait state until a given dispatcher object is
set to the Signaled state or (optionally) until the wait times out.
KeWaitFor M utexObj ect
Puts the current thread into an aertable or nonaertable wait state until a given mutex is set to the
Signaled state or (optionally) until the wait times out.
KeWaitFor MultipleObjects
Putsthe current thread into an alertable or nonalertable wait state until any one or al of anumber of
dispatcher objects are set to the Signaled state or (optionally) until the wait times out.
PsGetCurrentThread
Returns a handle for the current thread.
KeGetCurrentThread
Returns a pointer to the opague thread object that represents the current thread.
10GetCurrentProcess
Returns a handle for the process of the current thread.
PsGetCur rentPr ocess
Returns a pointer to the process of the current thread.
KeEnter CriticalRegion
Temporarily disablesthe delivery of normal kernel APCs while ahighest -level driver is running in
the context of the user-mode thread that requested the current 1/0 operation. Special kernel-mode
APCsare still delivered.
Kel eaveCriticalRegion
Re-enables, as soon as possible, the delivery of normal kernel-mode APCs that were dsabled by a
preceding call to KeEnter CriticalRegion.
KeSaveFloatingPointState
Saves the current thread's nonvolatile floating-point context so that the caller can carry out itsown
floating-point operations.
KeRestor eFloatingPointState
Restores the previous nonvolatil e floating-point context that was saved with
K eSaveFloatingPointState.
ZwSetlnformationThread
Setsthe priority of agiven thread for which the caller has ahandle.
PsGetCurrentProcessid
Returns the system-assigned identifier of the current process.
PsGetCurrentThreadld
Returns the system-assigned identifier of the current thread.
PsSetCr eatePr ocessNotifyRoutine
Registersahighest level driver's callback that is subsequently notified whenever anew processis
created or existing process deleted.
PsSetCreateT hreadNotifyRoutine
Registers ahighest level driver's callback that is subsequently notified whenever anew thread is
created or an existing thread is deleted.
PsSetL oadl mageNotifyRoutine
Registers a callback routine for a highest level syst em-profiling driver. The callback is subsequently
notified whenever anew image is loaded for execution.

1.4.1 Buffer Management

ExAllocatePool
Allocates (optionally cache-aligned) memory from paged or nonpaged system space.

ExAllocatePoolWithQuota
Allocates pool memory charging quotaagainst the origina requestor of the /O operation. (Only
highest-level drivers can call thisroutine.)

ExAllocatePoolWithTag
Allocates (optionally cache aligned) tagged memory from paged or nonpaged system space. The
caller-supplied tag is put into any crash dump of memory that occurs.

ExAllocatePoolWithQuotaTag
Allocatestagged pool memory charging quota against the original requestor of the 1/0 operation.
The caller-supplied tag is put into any crash dump of memory that occurs. Only highest -level
driverscan cal thisroutine.

ExFreePool
Releases memory to paged or nonpaged system space.

ExInitializeNPagedL ookasidel ist
Initidizes alookaside list of nonpaged memory. After successful initiaization of thelist, fixedsize
blocks can be alocated from, and freed to, the lookaside list.

ExAllocateFr omNPagedL ookasidel ist
Removes the first entry from the specified lookaside list in nonpaged memory. If the lookaside list
isempty, alocates an entry from nonpaged pool.

ExFreeT oNPagedL ookasidel ist
Returns an entry to the specified lookaside list in nonpaged memory. If the list has reached its
maximum size, returns the entry to nonpaged pool.

ExDeleteNPagedl ookasidel ist
Deletes anonpaged lookaside ligt.

ExInitializePagedL ookasidel ist
Initializes alookaside list of paged memory. After successful initialization of thelist, fixedsize
blocks can be alocated from and freed to the lookaside list.

ExAllocateFromPagedL ookasidel ist
Removes the first entry from the specified lookaside list in paged memory. If the lookasidelist is
empty, alocates an entry from paged pool.

ExFreeT oPagedL ookasidel ist
Returns an ertry to the specified lookaside list in paged memory. If the list has reached its
maximum size, returns the entry to paged pool.

ExDeletePagedL ookasidel ist
Deletes apaged lookasidelist.

MmQuerySystemSize
Returns an estimate (small, medium, or large) of the amount of memory available on the current
platform.

MmIsThisAnNtAsSystem
Returns TRUE if the machine is running as a Windows NT/Windows 2000 server. If thisroutine
returns TRUE, the caller islikely to require more resources to process |/O requests, and the
machineisaserver soit islikely to have more resources available.

1.4.2 Long-Term Internal Driver Buffers

MmAIllocateContiguousM emory
Allocates arange of physically contiguous, cache-aligned memory in nonpaged pool.
M mFreeContiguousM emory
Releases arange of physically contiguous memory when the driver unloads.
MmAllocateNonCachedM emory
Allocates a virtual address range of noncached and cache-aligned memory in nonpaged system
space (pool).
M mFreeNonCachedM emory
Releases avirtual address range of noncached memory in nonpaged sydem space when the driver
unloads.
AllocateCommonBuffer
Allocates and maps alogically contiguous region of memory that is simultaneously accessible both
from the processor and from a device, given access to an adapter objed, the requested length of the

memory region to allocate, and access to variables where the starting logical and virtual addresses
of the allocated region are returned. Returns TRUE if the requested length was alocated. Can be
used for continuous busmaste DMA or for system DMA using the autoinitialize mode of a system
DMA controller.

EreeCommonBuffer
Releases an allocated common buffer and unmapsiit, given access to the adapter object, the length,
and the starting logical and virtual addresses of the region to be freed when the driver unloads.
Arguments must match those passed in the call to AllocateCommonBuffer.

1.4.3 Buffered Data and Buffer Initialization

RtlICompareMemory
Compares data, given pointersto caller-supplied buffers and the length in bytes for the comparison.
Returns the number of bytesthat are equal.

RtICopyMemory
Copies the data from one caller-supplied buffer to another, given pointersto both buffers and the
length in bytes to be copied.

RtIMoveM emory
Copies the data from one caller-supplied memory range to another, given pointersto the base of
both ranges and the length in bytes to be copied.

RtIFillMemory
Fills a caller-supplied buffer with the specified UCHAR value, given a pointer to the buffer and the
length in bytes to befilled.

RtlZeroMemory
Fillsabuffer with zeros, given a pointer to thecaller-supplied buffer and the length in bytesto be
filled.

RtlStoreUshort
Stores aUSHORT value at a given address, avoiding aignment faults.

RtIRetrieveUshort
Retrievesa USHORT value at agiven address, avoiding alignment faults, and storesthe value at a
given address, that is assumed to be aligned.

RtlStoreUlong
Storesa ULONG vaue at a given address, avoiding alignment faults.

RtIRetrieveUlong
Retrieves a ULONG value at a given address, avoiding aignment faults, and storesthe value at a
given address, that is assumed to be aigned.

1.4.4 Address Mappings and MDLs

MmGetPhysicalAddress
Returns the corresponding physical addressfor agiven valid virtual address.
MmGetMdlVirtualAddress
Returns a (possibly invalid) virtual address for a buffer described by a given MDL ; the returned
address, used as an index to aphysical address entry inthe MDL, can beinput to MapTransfer for
driversthat use DMA.
MmGetSystemAddressForMdl
Returns a system-space virtual address that maps the physical pages described by agiven MDL for
drivers whosedevices must use PIO. If no virtual address exists, oneisassigned. If none are
available, abug check isissued. Windows 2000 drivers should use
MmGetSystemAddr essFor MdISafe instead.
MmGetSystemAddressForMdISafe
Returns asystem-space virtual address that maps the physical pages described by agiven MDL for
driverswhose devices must use PIO. If no virtual address exists, oneis assigned.

MmBuildM dIFor NonPagedPool

Fillsin the corresponding physical addresses of agiven MDL that specifies arange of virtual
addresses in nonpaged pool.

MmGetMdIByteCount
Returns the length in bytes of the buffer mapped by agiven MDL.

MmGetM dIByteOffset
Returns the byte offset within a page of the buffer described by agiven MDL.

MmM apL ockedPages
Maps already locked physical pages, described by agiven MDL, to areturned virtual address range.

MmUnmapL ockedPages
Releases a mapping set up by MmM apL ockedPages.

MmlsAddressValid
Returns whether a page fault will occur if aread or write operation is done at the given virtual
address.

MmSzeOfMdl
Returns the number of bytes required for an MDL describing the buffer specified by the given
virtua address and length in bytes.

MmCreateMdl
Allocates and initializes an MDL describing a buffer specified by the given virtua address and
length in bytes; returns a pointer to the MDL.

M mPrepareMdIFor Reuse
Reinitializes a caller-created MDL for reuse.

MmlnitializeMdl
Initializes a caller-created MDL to describe a buffer specified by the given virtual address and
length in bytes.

MmM apl oSpace
Maps aphysica address range to a cached or noncached virtual address range in nonpaged system
space.

MmUnmapl oSpace
Unmaps avirtual address range from aphysical address range.

M mProbeAndL ockPages
Probes the pages specified in an MDL for a particular kind of access, makes the pages resident, and
locks them in memory; returns the MDL updated with corresponding physical addresses. (Usudly,
only highest -level driverscall thisroutine.)

MmUnlockPages
Unlocks the previoudly probed and locked pages specified inan MDL.

10AllocateMdl
Allocates an MDL large enough to map the starting address and length supplied by the caller;
optionally associates the MDL with agiven IRP.

loBuildPartialMdl
Builds an MDL for the specified startin g virtual address and length in bytes from a given source
MDL. Driversthat split large transfer requests into anumber of smaller transfers can call this
routine.

loFreeMdl
Releases agiven MDL dlocated by the caller.

1.4.5 Buffer and MDL Management

ADDRESS AND SIZE TO SPAN _PAGES

Returns the number of pages required to contain agiven virtual address and sizein bytes.
BYTE OFFSET

Returns the byte offset of agiven virtual addresswithin the page.
BYTES TO PAGES

Returns the number of pages necessary to contain a given number of bytes.
PAGE_ALIGN

Returnsthe page-aligned virtua addressfor the page that contains a given virtual address.
ROUND_TO PAGES

Rounds a given size in bytes up to a page-size multiple.

1.4.6 Device Memory Access

For the following, XXX_REGISTER_XXX indicates device memory that is mapped onto system

space, while XXX_PORT_XXX indicates device memory in I/O space.
READ PORT UCHAR

Reads a UCHAR value from the given |/O port address.
READ PORT USHORT

Reads a USHORT value from the given 1/O port address.
READ PORT ULONG

Reads a ULONG value from the given |/O port address.
READ PORT BUFFER UCHAR

Reads a given count of UCHAR vaues from the given 1/0 port into a given buffer.
READ PORT BUFFER USHORT

Reads agiven count of USHORT values from the given 1/O port into a given buffer.
READ PORT BUFFER ULONG

Reads a given count of ULONG values from the given /O port into agiven buffer.
WRITE PORT UCHAR

Writes agiven UCHAR valueto the given |/O port address.
WRITE PORT USHORT

Writes agiven USHORT value to the given 1/O port address.
WRITE PORT ULONG

Writes agiven ULONG value to the given 1/O port address.
WRITE PORT BUFFER UCHAR

Writes agiven count of UCHAR values from a given buffer to the given I/O port.
WRITE PORT BUFFER USHORT

Writes agiven count of USHORT values from a given buffer to the given 1/0 port.
WRITE PORT BUFFER ULONG

Writes agiven count of ULONG values from agiven buffer to the given 1/0O port.
READ REGISTER UCHAR

Reads a UCHAR value from the given register address in memory space.
READ REGISTER USHORT

Reads a USHORT value from the given register address in memory space.
READ REGISTER ULONG

Reads a ULONG value from the given register address in memory space.
READ REGISTER BUFFER UCHAR

Reads a given count of UCHAR vaues from the given register address into the given buffer.

READ_REGISTER BUFFER USHORT

Reads agiven count of USHORT values from the given register addressinto the given buffer.

READ REGISTER BUFFER ULONG

Reads a given count of ULONG values from the given register address into the given buffer.
WRITE REGISTER UCHAR

Writesagiven UCHAR value to the given register addressin memory space.
WRITE REGISTER USHORT

Writes agiven USHORT value to the given register addressin memory space.
WRITE REGISTER ULONG

Writes agiven ULONG value to the given register addressin memory space.
WRITE REGISTER BUFFER UCHAR

Writes agiven count of UCHAR values from a given buffer to the given register address.
WRITE REGISTER BUFFER USHORT

Writes agiven count of USHORT values from a given buffer to the given register address.
WRITE REGISTER BUFFER ULONG

Writes agiven count of ULONG values from a given buffer to the given register address.

1.4.7 Pageable Drivers

MmL ock PagableCodeSection
Locks a set of driver routines marked with a special compiler directive into system gace.

M mL ock PagableDataSection
L ocks data marked with a special compiler directive into system space, when that datais accessed
infrequently, predictably, and at an IRQL less than DISPATCH_LEVEL.

M mL ock PagableSectionByHandle
L ocks a pageable section into system memory using a handle returned from
M mL ock PagableCodeSection or MmL ockPagableDataSection.

M mUnlock Pagablel mageSection
Releases a section that was previoudly locked into system space when the driver is no longer
processing | RPs, or when the contents of the section is no longer required.

M mPageEntireDriver
Letsadriver page al of its code and data regardless of the attributes of the various sectionsin the
driver'simage.

MmResetDriver Paging
Resets a driver's pageable status to that specified by the sections which make up the driver'simage.

1.4.8 Sections and Views

InitializeObj ectAttributes
Sets up a parameter of type OBJECT_ATTRIBUTES for a subsequent call to a ZwCreate Xxx or
ZwOpenXxx routine.
ZwOpenSection
Obtains a handle for an existing section, provided that the requested access can be allowed.
ZwMapViewOfSection
Maps aview of an open section into the virtual address space of a process. Returns an offset into
the section (base of the mapped view) and the size mapped.
ZwUnM apViewOfSection
Releases amapped view in the virtual address space of a process.

1.5 DMA

loGetDmaAdapter
Returns a pointer to an adapter object that represents either the DMA channel to which the driver's

deviceis connected or the driver's busmaster adapter. Also returns the maximum number of map
registers the driver can specify for each DMA transfer.
MmGetMdlVirtualAddr ess
Returns the base virtual address of a buffer described by agiven MDL. The returned address, used
asan index to aphysica address entry in the MDL, can be input to MapTransfer.
M mGetSystemAddr essFor MdISafe
Returns a nonpaged system-space virtual addressfor the base of the memory area described by an
MDL. It mapsthe physical pages described by the MDL into system space, if they are not aready
mapped to system space. WDM drivers should use MmGetSystemAddressForMdl instead.
ADDRESS AND_SIZE TO SPAN PAGES
Returns the number of pages spanned by the virtual range defined by avirtual address and alength
in bytes. A driver can use this macro to determine whether atransfer request must be split into
partia transfers.
AllocateAdapter Channel
Reserves exclusive access to aDMA channel and map registers for a device. When the channel and
registers are available, this routine calls adriver -supplied AdapterControl routine to carry out an
1/O operation through either the system DMA controller or a busmaster adapter.
AllocateCommonBuffer
Allocates and maps alogically contiguous region of memory that is simultaneously accessible from
both the processor and a device. This routine returns TRUE if the requested length was allocated.
FlushAdapter Buffers
Forces any dataremaining in either abusmaster adapter's or the system DMA controller'sinternal
buffersto be written into memory or to the device.
FreeAdapter Channel

Releases an adapter object that represents a system DMA channel, and optionally rel eases any
allocated map registers.
EreeCommonBuffer
Releases and unmaps a previoudly allocated common buffer. Arguments must match those passed
inan earlier call toAllocateCommonBuffer.
FreeM apRegisters
Releases a set of map registers that were saved from acall to AllocateAdapter Channel. A driver
callsthisroutine after using the registersin one or more callsto MapTransfer, flushing the cache
by calling FlushAdapter Buffers, and completing the busmaster DMA transfer.
GetDmaAlignment
Returns the buffer alignment requirements for aDMA controller or device.
GetScatter GatherL ist
Prepares the system for scatter/gather DMA for a device and calls a driver-supplied routineto carry
out the |/O operation. For devicesthat support scatter/gather DMA, this routine combinesthe
functionality of AllocateAdapter Channel and MapTransfer.
KeFlushl oBuffers
Flushes the memory region described by an MDL from all processors' caches into memory.
MapTransfer
Sets up map registers for an adapter object previously alocated by AllocateAdapter Channel to
map atransfer from alocked-down buffer. Returns the logica address of the mapped region and,
for busmaster devices that support scatter/gather, the number of bytes mapped.
PutDmaAdapter
Frees an adapter object previously alocated by | oGetDmaAdapter.
PutScatter GatherList
Frees map registers and scatter/gather list previously allocated by GetScatter GatherList.
ReadDmaCounter
Returnsthe number of bytes yet to be transferred during the current system DMA operation (in
autoinitialize mode).

1.6 PIO

MmProbeAndL ockPages
Probesthe pages specified in an MDL for aparticular kind of access, makes the pages resident, and
locks them in memory; returns the MDL updated with corresponding physical addresses.
MmGetSystemAddressFor M dISafe
Returns a system-space virtual address that maps the physical pages described by agiven MDL for
drivers whose devices must use PIO. If no virtual address exists, oneis assigned. Windows 98
drivers should use MmGetSystemAddressForMdl instead.
KeFlushl oBuffers
Flushes the memory region described by agiven MDL from all processors cachesinto memory.

MmUnlockPages
Unlocks the previoudly probed and locked pages specified in an MDL.

MmM apl oSpace
Maps aphysical address range to a cached or noncached virtual address range in nonpaged system
space.

MmUnmapl oSpace

Unmaps avirtual address range from a physical addressrange.

1.7 Driver-Managed Queues

KelnitializeSpinL ock
Initializesavariable of type KSPIN_LOCK. Aninitialized spin lock is arequired parameter to the
Ex..InterlockedList routines.

Initializel istHead

Sets up a queue header for adriver'sinternal queue, given a pointer to driver-supplied storage for
the queue header and queue. An initialized queue header is arequired parameter to the
ExlInterlockedl nsert/Remove..List routines.

ExInterlockedlnsertTaill ist
Inserts an entry at the tail of adoubly-linked list, using a spin lock to ensure multiprocessor -safe
accessto thelist and atomic modification of thelist links.

ExInterlockedlnsertHeadL ist
Inserts an entry at the head of adoubly-linked list, using a spin lock to ensure multiprocessor-safe
access to thelist and atomic modification of thelinksin thelist.

ExInterlockedRemoveHeadL ist
Removes an entry from the head of a doubly-linked list, using a spin lock to ensure multiprocessor -
safe access to the list and atomic modification of thelinksin thelist.

ExInterlockedPopEntryL ist
Removes an entry from the head of asingly-linked list as an atomic operation, using aspin lock to
ensure multiprocessor-safe accessto the list.

ExlnterlockedPushEntryL ist
Inserts an entry at the head of asingly -linked list as an atomic operation, using a spin lock to ensure
multiprocessor -sdfe access to the list.

IsListEmpty
Returns TRUE if aqueueis empty. (Thistype of doubly-linked list is not protected by a spin lock,
unless the caller explicitly manages synchronization to queued entries with an initialized spin lock
for which the caller suppliesthe storage.)

InsertTailList
Queues an entry at the end of thellist.

InsertHeadL ist
Queues an entry at the head of thelist.

RemoveHeadL ist
Dequeues an entry at the head of thelist.

RemoveTailL ist
Dequeues an entry at the end of the list.

RemoveEntrylL ist
Returns whether a given entry isin the given list and dequeues the entry if it is.

PushEntryL ist
Inserts an entry into the queue. (Thistype of singly-linked list is not protected by a spin lock, unless
the caller explicitly manages synchronization to queued entries with an initialized spin lock for
which the caller suppliesthe storage.)
PopEntryList
Removes an entry from the queue.
ExInterlockedPopEntrySList
Removes an entry from the head of a sequenced, singly -linked list that was set up with
ExInitializeSL istHead
ExinterlockedPushEntrySList
Queues an entry at the head of a sequenced, singly-linked list that was set up with
ExInitializeSL istHead
ExQueryDepthSList
Returns the number of entries currently queued in a sequenced, singly -linked list.
ExInitializeNPagedL ookasidel ist
Sets up alookaside ligt, protect ed by a system-supplied spin lock, in nonpaged pool from which the
driver can allocate and free blocks of afixed size.
KelnitializeDeviceQueue
Initializes adevice queue object to anot-busy state, setting up an associated spin lock for
multiprocessor -safe access to device queue entries.
KelnsertDeviceQueue
Acquires the device queue spin lock and queues an entry to a device driver if the device queueis
not empty; otherwise, insertsthe entry at thetail of the device queue.
KelnsertByK eyDeviceQueue
Acquires the device queue spin lock and queues an entry to a device driver if the device queueis
not empty; otherwise, inserts the entry into the queue according tothe given sort -key value.
KeRemoveDeviceQueue
Removes an entry from the head of a given device queue.
KeRemoveByK eyDeviceQueue

Removes an entry, selected according to the specified sort -key value, from the given device queue.

KeRemoveEntryDeviceQueue
Determines whether a given entry isin the given device queue and, if so, dequeues the entry.

1.8 Driver System Threads

PsCreateSystemT hr ead

Creates akernel-mode thread associated with a given process object or with the default system

process. Returns a handle for the thread.
PsTerminateSystemThread

Terminates the current thread and satisfies as many waits as possible for the current thread object.
PsGetCurrentThread

Returns a handle for the current thread.
KeGetCurrentThread

Returns a pointer to the opague thread object that representsthe current thread.
KeQueryPriorityThread

Returnsthe current priority of agiven thread.
KeSetBasePriorityThread

Setsup the run-time priority, relative to the system process, for adriver-created thread.
KeSetPriorityThread

Setsup the run-time priority for adriver-created thread with areal-time priority attribute.
KeDelayExecutionThread

Puts the current thread into an alertable or nonalertable wait statefor agiveninterval.
loQueueWorkltem

Queues an initialized work queue item so the driver-supplied routine will be called when a system

worker thread is given control.
ZwSetlnformationThread

Setsthe priority of agiven thread for which the caller hasahandle.

1.9 Strings

RtlinitString
Initializes the specified string in a buffer.

RtlInitAnsiString
Initializes the specified ANS! string in a buffer.
RtlInitUnicodeString
Initializes the specified Unicode string in a buffer.
RtlIAnsiStringT oUnicodeSize
Returnsthe size in bytes required to hold aUnicode version of agiven buffered ANS! string.
RtlIAnsiStringT oUnicodeString
Converts abuffered ANS| string to a Unicode string, given a pointer to the source-string buffer and
the address of caller-supplied storagefor a pointer to the destination buffer. (Thisroutine allocates a
dedtination buffer if the caller does not supply the storage.) Y ou can also use the string
manipulation routines provided by a compiler to convert ANS! strings to Unicode.
RtIFreeUnicodeString
Releases a buffer containing a Unicode string, given a pointer to the buffer returned by
RtIAns StringToUnicodeString
RtlUnicodeStringT oAnsiString
Converts a buffered Unicode string to an ANSI string, given a pointer to the source-string buffer
and the address of caller-supplied storage for apointer to the destination buffer. (Thisroutine
allocates a destination buffer if the caller does not supply the storage.)
RtlFreeAnsiString
Releases abuffer containing an ANS| string, given a pointer to the buffer returned by
RtlUnicodeStringToAnsiString
RtlIAppendUnicodeStringT oString

Concatenates a copy of a buffered Unicode string with a buffered Unicode string, given pointersto
both buffers.
RtlAppendUnicodeT oString
Concatenates a given input string with a buffered Unicode string, given a pointer to the buffer.
RtlCopyString
Copies the source string to the destination, given pointersto both buffers, or setsthe length of the
destination string (but not the length of the destination buffer) to zero if the optional pointer to the
source-string buffer is NULL.
RtlCopyUnicodeString
Copies the source string to the destination, given pointersto both buffers, or setsthe length of the
destination string (but not the length of the destination buffer) to zero if the optional pointer to the
source-gring buffer is NULL.

RtlEqualString
Returns TRUE if the given ANSI al phabetic strings are equivalent.

RtlEqualUnicodeStrin
Returns TRUE if the given buffered strings are equivaent.

RtlCompareString
Compares two buffered, single-byte character strings and returns a signed value indicating whether
they are equivalent or which is greater.
RtlCompar eUnicodeString
Compares two buffered Unicode strings and returns a signed val ue indicating whether they are
equivaent or which is greater.
RtlUpper String
Converts acopy of abuffered string to uppercase and stores the copy in a destination buffer.
RtlUpcaseUnicodeString
Converts acopy of abuffered Unicode string to uppercase and stores the copy in adestination
buffer.
Rtllnteger ToUnicodeString
Converts an unsigned integer value in the specified base to one or more Unicode charactersin a
buffer.
RtlUnicodeStringT ol nteger
RtlUnicodeStringT ol nteger converts the Unicode string representation of an integer into its
integer equivalent.

1.10 Data Conversions

InterlockedExchange
Setsavariable of type LONG to agiven value as an atomic operation; returnsthe origina value of
thevariable.
RtiConvertL ongToL ar gel nteger
Convertsagiven LONG valueto aLARGE_INTEGER value.
RtlConvertUlongT oL ar gel nteger
Convertsagiven ULONG vadueto aLARGE_INTEGER value.
RtITimeFieldsToTime
Convertsinformation ina TIME_FIEL DS structure to system time.
RtITimeToTimeFields
Converts asystem time value into a buffered TIME_FIELDS value.
ExSystemTimeT oL ocal Time
Adds the time-zone bias for the current locale to GMT system time, converting it to local time.
ExL ocalTimeToSystemTime
Subtractsthetime-zone bias from the local time, converting it to GMT system time.
RtlAns StringT oUnicodeString
Converts a buffered ANSI string to a Unicode string, given a pointer to the source-string buffer and
the address of caller-supplied storage for a pointer to the destination buffer. (Thisroutine allocatesa
destination buffer if the caller does not supply the storage.)
RtlUnicodeStringToAnsiString
Converts a buffered Unicode string to an ANSI string, given a pointer to the source-string buffer
and the address of caller-supplied storage for apointer to the destination buffer. (Thisroutine
alocates a destination buffer if the caller does not supply the storage.)

RtlUpper String
Converts a copy of abuffered string to uppercase and stores the copy in a destination buffer.

RtlUpcaseUnicodeString
Convertsacopy of abuffered Unicode string to uppercase and stores the copy in a destination
buffer.

RtIChar T ol nteger
Converts a single-byte character value into an integer in the specified base.

RtlInteger ToUnicodeString
Converts an unsigned integer value in the specified base to one or more Unicode charactersin the
given buffer.

RtlUnicodeStringT ol nteger
Converts a Unicode string representation of an integer into its integer equivalent.

1.11 Access to Driver-Managed Objects

ExCreateCallback
Cresates or opens a callback object.

ExNotifyCallback
Callsthe callback routines registered with a previously created or openedcallback object.

ExRegister Callback
Registers acallback routine with a previously created or opened callback object, so that the caller
can be notified when conditions defined for the callback occur.

ExUnregigter Callback
Cancelsthe registration of acallback routine with a callback object.

| oRegister Devicel nterface
Registers device functiondlity (adevice interface) that adriver can enable for use by applicationsor
other system components.

| oSetDevicel nterfaceState
Enables or disables a previoudly registered device interface. Applications and other system
components can open only interfaces that are enabled.

loGetDevicel nterfaceAlias
Returnsthe aias device interface of the specified interface class, if the alias exists. Device
interfaces are considered aliases if they are exposed by the same underlying device and have
identical interface reference strings, but are of different interface classes.

| oGetDevicel nterfaces
Returns alist of device interfaces of a particular device interface class (such as al devices onthe
system that support aHID interface).

| 0GetFileObjectGenericM apping
Returns information about the mapping between generic access rights and specific access rights for
fileobjects.

| 0SetShareAccess
Sets the access allowed to a given file object representing adevice. (Only highest -level drivers can
call thisroutine.)

| oCheck Shar eAccess
Checks whether arequest to open afile object specifies adesired accessthat is compatible with the
current shared access permissions for the open file object. (Only highest-level driverscan call this
routine.)

| oUpdateShar eAccess
Madifies the current share-access permissions on the given file object. (Only highest-level drivers
can call thisroutine)

| oRemoveShar eAccess
Restores the shared-access permissions on the given file object that were modified by a preceding
call to loUpdateShar eAccess.

RtlL engthSecurityDescriptor
Returns the size in bytes of agiven security descriptor.

RtlValidSecurityDescriptor
Returns whether a given security descriptor is valid.

RtlCreateSecurityDescriptor

Initializes a new security descriptor to an absolute format with default values (in effect, with no
security constraints).
RtlSetDacl SecurityDescriptor
Setsthe discretionary ACL information for agiven security descriptor in absolute format.
SeAssignSecurity
Builds a security descriptor for anew object, given the security descriptor of its parent directory (if
any) and an originally requested security for the object.
SeDeassignSecurity
Dedllocates the memory associated with a security descriptor that was created with
SeAssignSecurity.
SeValidSecurityDescriptor
Returns whether a given security descriptor is structurally valid.
SeAccessCheck.
Returns a Boolean indicating whether the requested access rights can be granted to an object
protected by a security descriptor and, possibly, a current owner.
SeSinglePrivilegeCheck
Returns a Boolean indicating whether the current thread has at |east the given privilege level.

1.12 Error Handling

loAllocateErrorL ogEntry
Allocates and initializes an error log packet; returns a pointer so the caler can supply error-log data
and call loWriteErrorLogEntry with the packet.
loWriteErrorL ogEntry
Queues apreviously alocated error log packet, filled in by the driver, to the system error logging
thread.
lolsErrorUserinduced
Returns a Boolean indi cating whether an 1/0 request failed due to one of the following (user-
correctable) conditions: STATUS_|O_TIMEOUT, STATUS DEVICE_NOT_READY,
STATUS UNRECOGNIZED_MEDIA, STATUS VERIFY_REQUIRED,
STATUS WRONG_VOLUME, STATUS MEDIA_WRITE_PROTECTED, or
STATUS NO_MEDIA_IN_DEVICE. If theresult is TRUE, aremovable-media driver must call
loSetHardErrorOrVerifyDevice before completing the IRP.
loSetHardErrorOrVerifyDevice
Supplies the device object for which the given IRP was failed due to a user-induced error, such as
supplying theincorrect mediafor the requested operation or changing the media before the
requested operation was completed. (A file system driver uses the associated device object to send a
popup to the user; the user can then correct the error or retry the operation.)
l0SetThreadHardErrorMode
Enables or disables error reporting for the current thread using |oRaiseHardError or
loRaisel nformationalHardError .
loGetDeviceToVerify
Returns a pointer to the device object, representing aremovablemedia device, that is the target of
the given thread's 1/O request. (Thisroutineis useful only tofile systems or other highest -level
drivers)
loRaiseHardError
Causes a popup to be sent to the user indicating that the given IRP was failed on the given device
object for an optiona VPB, so that the user can correct the eror or retry the operation.
loRaisel nformationalHardError
Causes a popup to be sent to the user, showing an I/O error status and optiona string supplying
more information.
ExRaiseStatus
Raises an error status so that a caller-supplied structured exception handler is cdled. (Thisroutine
isuseful only to highest -level driversthat supply exception handlers, in particular to file systems.)
KeBugCheckEx
Brings down the system in a controlled manner, displaying the bugcheck code and possibly more
information, after the caller discovers an unrecoverable inconsistency that will corrupt the system
unlessit is brought down. After the system is brought down, this rout ine displays bug-check and

possibly other information. (This routine can be called when debugging under-development drivers.
Otherwise, drivers should never call this routine when they can handle an error by failing an IRP
and by calling |oAllocateErrorLogEntry and |oWriteErrorLogEntry.)

KeBugCheck
Brings down the system in a controlled manner when the caller discovers an unrecoverable
inconsistency that will corrupt the system if the caller continues to run. KeBugCheckEx is
preferable.

KelnitializeCallbackRecord
Initializes abug-check callback record before a device driver cals
KeRegister BugCheckCallback .

KeRegister BugCheck Callback
Registers the device driver's bug-check callback routine, that is called if a system bug check occurs.
Such a driver-supplied routine saves driver-determined state information, such as the contents of
device registers, that would not otherwise be written into the system crash-dump file.

KeDer egister BugCheck Callback
Removes adevice driver's callback routine from the set of registered bug-check callbacks.

